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Abstract— Earlier P2020 SEE data are compared and 

expanded to a recent die revision, significantly increasing 

samples tested by protons by five devices, and by heavy ions by 

five devices.  Earlier tested SEE types are found to be fairly 

similar in register, L1 cache, L2 cache, and CPU crashes.  New 

test methods give SEE performance for the flash memory 

controller, watchdog circuit, and a built-in Ethernet port on the 

P2020 processor.  Results from heavy ion and proton tests are 

presented, with data separated over a large number of specific 

error types and test programs. 

I. INTRODUCTION 

he P2020 processor is used in several space programs, 

and is available from Space Micro in the Proton 400k-L 

flight computer [1].  The processor uses an architecture that is 

very similar to the RAD750 [2] – a radiation hardened 

specialty processor for space, but is a much newer and more 

powerful 45 nm dual core device that is built for the 

commercial market.  Similar testing has previously been 

reported [3], but in the current case the increase in data is 

significant and the data are now taken across multiple die 

revisions of the P2020.  Thus the present data may be 

combined with the earlier data to create a more complete data 

set, and enable programs to make a more compelling 

argument for qualification of these devices. 

 We tested five Freescale (now Qualcomm) P2020RDB-

PCA boards for proton single-event effects (SEE).  We also 

tested five different P2020RDB-PCA boards for heavy ion 

SEE.  Testing was performed over five test trips including the 

Tri-University Meson Facility (TRIUMF), Massachusetts 

General Hospital (MGH), Lawrence Berkeley National Lab 

(LBNL), and Texas A&M University (TAMU). 

This workshop proceeds as follows.  We discuss the test 

setup in section II.  We follow this with proton results in 

section III, then heavy ion results in section IV.  The 

workshop conclusion then follows in section V. 

II. TEST SETUP 

A. Test Boards and Support Equipment 

Testing was performed using the P2020RDB-PCA.  The 

test boards were used to provide bias to the DUT because 

earlier work showed no significant risk of power-related 

issues when irradiating the processor.  Each P2020RDB-PCA 

was connected to a test interface computer that provided two 

universal asynchronous receiver transmitter (UART) ports.  

Each central processing unit (CPU) was provided its own 

UART for direct communication of results during testing. 

For proton testing there was no special preparation.  But 

for heavy ion testing it was necessary to remove the copper 

heatspreader over the DUT.  Our approach was to mill down 

the DUT to expose the epoxy underneath.  For clarification of 

linear energy transfer values, we further removed the filler 

epoxy inside the heatspreader by using acid.  Initial efforts 

were somewhat unreliable, and we determined that it was 

necessary to attempt to remove the epoxy before any 

particular board (DUT) was powered for a length of time and 

the epoxy hardened. 

 

Figure 1: Schematic of the test system. Note that the actual power 
supply was the P2020RDB-PCA power unit. The system was not 

monitored for SEL, and none was expected. 
 

Testing was performed on the P2020RDB-PCA using a 

custom hardware setup that allowed for a second computer to 

interact with the P2020, with one UART (universal 

asynchronous receiver transmitter) port assigned to each of 
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the e500 cores in the P2020.  The arrangement of test 

hardware is given in Fig. 1. 

B. Event Types 

We have established the following as event types that can 

be identified by our test software and hardware during SEE 

exposure: 

1) Register SBU – a single bit changes in a processor 

register  

2) Register MBU – a register changes its value 

completely –note that all observed register MBUs were 

consistent with complete value changes, rather than two- 

or three- bit errors 

3) L1 invalidates – an L1 cache line (with parity 

protection disabled) is lost.  We believe this occurs when 

the disabled parity protection system encounters a parity 

error and interprets it as a cache miss. 

4) L1 SBU – this is a reported parity error when 

parity is enabled in the L1 cache.  This causes a detected 

loss of data. 

5) L1 parity invalidations – this is when a parity 

protected L1 cache loses a valid line of data with no other 

warning.  This causes silent data corruption (SDC). 

6) L2 SBU – a bit error observed in L2 data (we test 

L2 with EDAC disabled, and as regular memory – so that 

tag errors are not tested) 

7) External memory errors  

8) Watchdog – this is a general error in the watchdog 

system (incorrect watchdog timeout, incorrect change in 

watchdog status) 

9) Ethernet packet error – this is when a packet is 

received by, or transmitted from, the DUT with an error 

in it. 

10) Flash Memory – errors reading or writing flash 

memory using external debugging tools 

11) Crashes – this is when a CPU core fails with no 

other indication of problems.  Sometimes an exception 

occurs before a crash, but in those cases it is expected 

that a crash will not occur (to be clear, if the exception is 

not properly handled, then the processor may crash after 

the exception, but this is a software problem rather than 

an inherent hardware SEE sensitivity. 

12) Strange Events – All other event types that could 

result in undetectable erroneous operation are 

individually indicated.  Usually these are actually register 

SBUs that impact how a given test runs, but in some cases 

the behaviors may indicate a different problem.  We are 

not able to differentiate anything other than a potential 

SBU sensitivity. 

C. Test Algorithms and Methods 

In this section provide information on the test algorithms 

and methods used to test for the event types indicated in the 

previous section. 

Register tests were performed by writing a known value to 

a target register or set of registers, then the algorithm waits a 

given period, after which the registers should are read to 

observe SEEs and then the test repeats.  This test is 

performed by writing values to registers before the beam is 

turned on; the beam is then turned on and fluence is collected 

on the DUT while it holds static data; and finally, after the 

beam is turned off, the stored values can be read to determine 

errors.  This testing collects SBUs and MBUs in registers.  

Register testing was also performed using an external 

debugger that could directly read and write the registers, with 

essentially the same sort of test approach, however the results 

are only provided in a qualitative format. 

L1 cache testing was performed in three ways.  First, when 

parity protection is disabled and the cache is tested by loading 

a known value and having the cache sit idle during exposure.  

Second, when parity protected is enabled and the test 

algorithm is identical (cache is inactive during exposure).  

And, third, by actively using the cache during irradiation – by 

constantly writing and reading from the cache. 

When parity protection is disabled, cache lines are 

invalidated when a parity event is detection.  (This is an 

interpretation of the events we observe – specifically, we 

observe no actual bit errors in the caches when parity is 

disabled.  Instead, we observe cache lines invalidated with a 

cross section that is consistent with the sum of the cross 

sections for all the bits in a given cache line).  We also 

observed exceptions when parity protection was enabled (but 

these exceptions caused the test program to restart the test 

loop, and undercounts events).  With the parity protection 

enabled, these events are expected to be capturable by the 

operating system (OS) – and if the OS is configured for 

write-through caches (a mode that is almost never used), 

these events will be silently repaired and the user will be 

unaffected.  We also observed invalidations when the parity 

protection was enabled, and we expect these would cause bad 

data to get into a running program with no notification to the 

user or operating system.  These cache tests are performed in 

the same manner as the register tests.  Namely, the given 

memory range is loaded with a known data pattern, then it is 

left to idle while the beam is applied to the DUT, 

periodically, the system is told to wake up and check the 

cache for errors, then refresh the data in the cache. 

The L2 cache was tested in cache as RAM mode, with the 

built-in error detection and correction (EDAC) disabled, so 

that bit errors could be observed.  This mode disables the 

cache tag information, which limits the collection of cache 

state error data, however, we interpret the cache state bits to 

be similar in SEE sensitivity to the data bits.  The L2 cache 

testing is performed with the same type of algorithm as the 

tests for the L1 cache.  Namely, the cache is loaded with a 

known value; the software is then put in an idle mode; the 

DUT is irradiated; and after irradiation is complete, the DUT 

is interrogated to determine what SEEs were collected. 

External memory interfaces were tested with one test 

program that performs writing and reading of external 

memory constantly during irradiation.  No external memory 

errors were ever observed during this test, but the crash 

sensitivity of the processor increased significantly (see 

below).  This test is activated and allowed to run 
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continuously during exposure.  If any events occur, 

exceptions are logged and can details be retrieved provided 

the test software does not crash.  If a crash occurs, it almost 

always requires immediately stopping the beam exposure and 

performing algorithms to attempt to recover the DUT.  In 

practice, it is usually necessary to at least reset the DUT, 

however we usually power-cycled the DUT after crashes. 

The watchdog system was tested in a few different 

configurations, observing different versions of machine 

checks related to time-outs on the watchdog system.  If a 

timeout or full watchdog error is erroneously observed, it is 

an error.    The test algorithm for this testing involved 

configuring the timeouts for two levels of watchdog machine 

checks.  We then observed if the configuration/control of the 

watchdog indicated proper transitions of watchdog state 

during irradiation.  Any unexpected or missed watchdog 

exceptions were recorded. 

The Ethernet system was tested by configuring a port to 

send UDP packets which were picked up by a second 

computer and checked for incorrect data.  Ethernet was tested 

at two speeds – 237 kbps and 44 Mbps.  Any errors in UDP 

packets were recorded as errors.  Lost UDP packets were 

ignored because they never exceeded 1% of packets, which 

was indistinguishable from rate observed without radiation 

present.  Ethernet testing was performed by allowing U-Boot 

to send UDP packets and then hijacking the Ethernet and 

DMA settings used in order to repeatedly send duplicate 

packets.  The Ethernet test ran continuously during exposure, 

and any significant delay in data transfer would be noticeable. 

Flash memory was tested by using an external debugger to 

perform flash writing or reading during exposure.  Prior to 

use, a known test file was uploaded to the flash memory.  

Reading during exposure was checked for errors by 

comparing the read file to the source file.  Similarly, after 

writing during exposure, we read back, after exposure, to see 

if the writing resulted in any errors.  These tests were entirely 

depended up on the operation of the BDI3000 debugger 

which was used to control the Flash controller on the P2020. 

Crashes are a general condition where a CPU stops 

interacting with the test system.  In this work, a crash is 

possible during any other test, and what it actually means is 

context-dependent.  We collect crash data from every test 

algorithm described here.  The actual cause of a crash is not 

known (this is somewhat different than other test groups may 

define, because this P2020 testing is the result of a significant 

amount of software development, and if we know what is 

causing the crash we design the software to not be vulnerable 

to that sensitivity – within reason).  We expect these, and a 

large percentage of the other errors described here, would 

result in single event functional interrupts (SEFIs) in real 

systems, but we do not try to separate out SEFIs in this work 

because the results would depend heavily on the exact test 

program used.  In fact, for some of the data reported here, 

crashes are split into two types – those occurring during 

external memory testing, and those occurring in every other 

test.  When actively stressing external memory, crashes are 

more than an order of magnitude more common. 

Strange events are tested in a similar way to crashes.  All 

test algorithms were used to collect strange events.  In 

general, we do not try to distinguish strange events for the 

purposes of developing SEE rates.  Instead, we indicate the 

qualitative behavior during a strange event and indicate if it is 

consistent with a predicted vulnerability of the code (for 

example, loops used to control execution duration can easily 

be altered by a bit flip in a significant bit, causing a dramatic 

increase or decrease in loop execution duration). 

 

III. PROTON RESULTS 

A. Register SBU 

The sensitivity of the registers to SBUs is shown in Figure 

2.  As with most of the results in this section, the data are 

presented with boards presented side-by-side, and include 

results from earlier work [3] for comparison. 

 
Figure 2: Register SBU cross sections for P2020 all test boards and old 

data.  Note that all five new boards are presented, with '-indicating testing at 

MGH.  Other points were taken at TRIUMF.  "0032'-200" was taken at MGH 

with 200 MeV protons.  All others were taken at 100 MeV.  The NEPP and 

MISSE-X points come from earlier work which was previously reported in 

[3]. 

B. Register MBU 

The sensitivity of the registers to proton-induced MBUs is 

shown in Figure 3. 
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Figure 3: Register MBU cross sections for P2020 all test boards and old 

data.  See the caption in Fig. 2 for more information on the different test 

boards and conditions. 

C. L1 Cache Invalidations – Parity Disabled 

The sensitivity of the L1 cache to proton-induced line 

invalidations when parity protection is not enabled is shown 

in Figure 4. 

 
Figure 4: Sensitivity of P2020 to cache line invalidations when parity is 

not enabled. See Fig.2 for information about the different boards and test 

conditions. 

D. L1 SBUs – Parity Enabled 

The sensitivity of the L1 cache invalidations and parity 

SBU events are compared in Fig. 5. 

 
Figure 5: The L1 Cache SBU cross section, as invalidations (left points) 

and parity events (right points).  Prime marks, ‘, indicate data taken at MGH.  

Board 0017 data from MGH at multiple energies combined in the parity SBU 

data analysis. 

E. L1 Cache Invalidations – Parity Enabled 

The sensitivity of the L1 cache to proton-induced line 

invalidations when parity protection is enabled is shown in 6.  

These events would lead to undetected erroneous operation of 

a real system. 

 

 
Figure 6: Sensitivity of L1 cache to line invalidations when parity is 

enabled.  See Fig. 2 for information about the different boards and test 

conditions. 

F. L2 Cache SBUs 

The cross sections for bit upsets on each of the five test 

boards are compared, both by facility (primed points are from 

MGH, unprimed from TRIUMF), and to the earlier NEPP 

and MISSE-X data in Fig. 7. 
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Figure 7: The cross section for bit upsets in the L2 cache is shown for the 

three test boards, compared to the earlier NEPP and MISSE-X results.  Note 

that for most data points, the error bars are smaller than the data points.  Data 

from MGH is indicated with a prime mark, ‘.  MGH data from 0017 combine 

100 and 200 MeV results. 

G. CPU Crashes 

After the events listed above, a high occurrence event type 

is for a CPU core to crash, resulting in no communication 

from that CPU core until it is reset or power-cycled (we 

routinely power-cycled, but usually reset is sufficient to 

restart).  For this error type, we observed a significant 

difference depending on whether or not we were running the 

test program that performs external memory reads and writes 

during exposure.  The sensitivity for these events to protons 

is presented in Figure 8.  Note the number of test cases and 

the clustering of the results.  The memory and non-memory 

tests are then combined to provide the “total-“ points.  This 

indicates the memory tests are 50-100x more prone to crashes 

than other test types.  We believe these are more indicative of 

an actual system with high memory usage (such as a standard 

operating system). 

 
Figure 8: Sensitivity of P2020 DUTs to crashes.  In this case some of the 

data were taken while running small test programs with minimal external 

memory requirements.  These are the Non-mem points.  The remaining data 

were taken while running an off-chip memory test.  The off-chip access 

dramatically increases the device crash sensitivity. 

H. Strange Events 

The final workshop will also provide data on the sensitivity 

of the P2020 to strange events, which are very similar to 

crashes, but have other symptoms than crashes.  The primary 

quality of these events that we wish to highlight is that they 

are believed to cause incorrect behavior without being 

identifiable by any error protection. 

IV. HEAVY ION RESULTS 

A. Register Sensitivity 

Heavy ion register sensitivity was measured and is shown 

below in Fig. 9.  Note that the large error bars (spanning four 

orders of magnitude) are actually situations with 0 counts that 

could not be cleanly shown on this figure.  Three new boards’ 

(0033, A1, and A3) data re compared to old data taken for the 

NEPP program. 

 
Figure 9: Register SBU sensitivity for P2020 is shown, comparing three 

new boards to old data.  Note that the large error bars (four orders of 

magnitude) reflect conditions with no counts (0 events). 

B. L1 Cache Sensitivity 

L1 cache sensitivity is shown in Fig. 10.  Note this also 

compares L2 cache sensitivity, and block errors, which are 

the same as line invalidations with parity enabled.  Block 

errors are plotted as device cross section, while L1 and L2 bit 

sensitivity is plotted as per-bit cross section. 

 
Figure 10: Comparison of L1 and L2 bit sensitivity and L1 block errors 

(line invalidations). 
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C. L2 Cache Sensitivity 

The sensitivity of the L2 cache bits during this testing is 

presented in Figure 11, shown separately from the previous 

figure.  Also in the figure is a comparison to the earlier 

reported data [3]. 

 
Figure 11: L2 Cache SBU sensitivity to heavy ions for new data and old 

data.  The results are essential identical.  Note that error bars are smaller than 

the plotting symbols. 

D. Flash Sensitivity 

No events were observed during testing of the Flash 

memory controller (keep in mind that only the P2020 

processor was irradiated).  The limiting cross section for 

Flash memory sensitivity is given in Fig. 12, below.  All data 

points represent only limiting cross section. 

 
Figure 12: The limiting cross section for possible Flash controller 

sensitivity (no events were seen to affect the Flash memory). 

E. Watchdog Sensitivity 

Watchdog testing showed no discernable watchdog events.  

The data taken show a limiting cross section of less than 

1×10-5 cm2/device. 

F. Ethernet Sensitivity 

During testing, no errors were observed during Ethernet 

packet transfers at any speed.  We did lose approximately 1-

3% of all packets that were sent, however this number did not 

significantly change with and without the beam.  Packet loss 

is a standard behavior of Ethernet protocols.  In a TCP/IP 

system, packet loss is masked by the protocol, which 

automatically requests resending of dropped packets.  We 

used UDP, which provides packets as-transmitted, and lost 

packets are simply lost. 

The primary limitation of the Ethernet results was the 

signal to noise ratio.  In this case, the noise was the crash rate 

of the test devices.  Ethernet errors were significantly below 

the crash sensitivity.  This is shown in Fig. 13.  which 

indicates, in the data points, the cross section for device 

crashes.  The region below the data points is the limiting 

cross section for packet corruption (of any kind), normalized 

to packets sent, which can be observed to be on the order of 

100,000s of packets sent during testing, with no errors.  

Although it is possible to improve detection of the signal (lost 

packets) by increasing the total amount of testing performed, 

it is unclear how to do this in a useful way, because 

increasing the beam flux actually increases the noise while 

reducing the signal.  Ideally, we would collect data over a 

very long time with increased overall fluence, but not flux.  

However, this is not practical.  

 
Figure 13: The crash sensitivity of the P2020 is compared to the limiting 

cross section for packet corruption.  This is somewhat complicated by the 

fact that the cross section per packet should be corrected by the packet up 

time. 

G. Other Results 

Heavy ion results will also be presented in the full 

workshop for registers, L1 cache, watchdog timers, crashes, 

and rare events.  

V. CONCLUSION 

Although the P2020 processor has undergone a revision 

between previously reported testing and the present testing, 

the SEE sensitivity is essentially unchanged.  The present 

data set increases the amount of data available to the point 

that a more viable qualification approach may be taken, 

though the present data is not a qualification dataset. 

The heavy ion results for this effort are summarized below, 

with highest tested LET, and cross section at highest LET.  

Note that the onset for all events was observed to be 1 MeV-

cm2/mg, with most events having a clear onset, or being 
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statistically limited at all LETs so that no good onset could be 

established. 

1. Register SBU: 1.10×10-9 cm2/bit 

2. Register MBU: 1.10×10-9 cm2/bit 

3. L1 Cache Invalidates: 1.51×10-9 cm2/bit 

4. L1 Cache Parity Events: 2.23×10-9 cm2/bit 

5. L1 Cache Invalid w/Parity: 9.75×10-5 cm2/device 

6. L2 SBU: 3.10×10-9 cm2/bit 

7. Flash 1×10-5 cm2/device 

8. Watchdog 1×10-5 cm2/device 

9. Ethernet 1×10-11 cm2/packet 

10. Crash Sensitivity (estimated) 10-5 - 10-3 cm2/device 

11. Strange Events (estimated) 10-5 cm2/device 

 

The proton results for this effort are summarized below 

(cross sections do not significantly change between 50 and 

200 MeV): 

1. Register SBU: 2.69×10-15 cm2/bit 

2. Register MBU: 2.69×10-15 cm2/bit 

3. L1 Cache Invalidates: 1.19×10-14 cm2/bit 

4. L1 Cache Parity Events: 1.19×10-15 cm2/bit 

5. L1 Cache Invalid w/Parity: 1.09×10-10 cm2/device 

6. L2 SBU: 8.35×10-15 cm2/bit 

7. Crash Sensitivity (regular): 1.41×10-12 cm2/device 

8. Crash Sensitivity (memory): 7.90×10-11 cm2/device 

9. Strange Events: 2.60×10-12 cm2/device 
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